

Recent Developments to Improve Scalability of Sparse Direct Solver

X. Sherry Li Lawrence Berkeley National Laboratory

> PARA'06 Workshop June 19, 2006

Introduction

- Sparse direct solvers are robust and reliable, but not tera/peta-scale friendly. Why?
 - I rregular, indirect memory access
 - Computational dependency
 - High communication-to-computation ratio (latency-bound)
 - Architectural trend: wider gap between processor and interconnect speeds

NEW DEVELOPMENTS:

- Switch-to-dense
 - Reduce indirect addressing and communication
- Parallel symbolic factorization [Grigori, Demmel, L.]
 - I mprove memory scalability
- Optimal complexity sparse factorization [Gu, Xia, L.]

SuperLU_DIST major steps

- Static numerical pivoting: improve diagonal dominance
 - Currently use MC64; Parallelization underway [J. Riedy]
- Sparsity-preserving ordering
 - Can use parallel Metis (ParMetis)
- Symbolic factorization:
 - Being parallelized (this talk)
- Numerics: factorization, triangular solves, iterative refinement
 - Parallelized; More performance tuning, scaling

Switch-to-dense

- Factors become denser and denser towards end ...
- Example: twotone (circuit), n = 120,750
- Last dense block:
 - size = 2250, density = 67%, flops >= 70%

Switch-to-dense benefit

- IBM p575 Power5; 7.6 Gflops peak
- Use 32 processors

Matrix	n	Dense size	Density	Dense Flops	Mflops/P	Time
Twotone old	120,750	2905	56%	84%	3,020 81	1.80 2.91
Pre2 old	659,033	9269	90%	83%	4,557 1,004	12.41 16.26
Torso3 old	259,156	10,444	99%	19%	4,570 2,862	41.89 43.41

Content

- Switch-to-dense
 - Reduce indirect addressing and communication
- Parallel symbolic factorization [Grigori, Demmel, L.]
 - I mprove memory scalability
- Optimal complexity sparse factorization [Gu, Xia, L.]

Symbolic factorization

- I dentify nonzero structure of L, U factors.
- Complexity: greater than nnz(L+U), but much smaller than flops(LU); Very fast in practice.
- Why parallel?
 - Matrix A may not fit in one processor.
- Why difficult?
 - Sequentiality: computation of i-th column/row depends on results of the previous ccolumns/rows.
 - Lower computation-to-communication ratio.

Parallelizing symbolic factorization

Goal:

Improve memory scalability, while maintaining reasonable speedup.

Approach:

- Use graph partitioning to reorder/partition matrix.
 - ParMetis on structure of A + A'
- Exploit parallelism given by this partition (coarse level) and by a block cyclic distribution (fine level).
- I dentify dense separators, dense columns of L and rows of U to decrease computation.

Matrix partition

- Separator tree
 - Balanced tree with balanced data distribution
 - Exhibits computational dependencies
 - ◆ If node j updates node k, then j belongs to subtree rooted at k.

Matrix distribution

Algorithm

- 1. Assign all the processors to the root.
- 2. Distribute the root (1D block cyclic along the diagonal) to processors in the set.
- 3. Assign to each subtree half of the processors.
- 4. Go to Step 1 for each subtree which is assigned more than one processor.

Algorithm

- 1) Perform local symbolic factorization of leaf node
- 2) **for** each level from 1 to logP **do**Let N(x:y) be node owned by myPE

endfor

```
/* inter-level computation */ left looking Send / Receive necessary L(:,1:x-1), U(1:x-1,:) Use received data to update L(:,x:y), U(x:y,:)
```

/* intra-level computation */ right looking for each block (i:j) of node N

If myPE owns this block

Compute L(:,i:j), U(i:j,:)Send / Reeive block (i:j) if necessary left looking

Use received data to update L(:,j+1:y), U(j+1:y,:)endfor

PARAO6 11

right looking

Experiments

Goals:

- Compare with sequential symbolic factorization algorithm in SuperLU_DIST (SFseq).
- Analyze memory usage and parallel runtime.

Test Matrices:

- 3D regular grid model problems
- Unsymmetric matrices: circuit simulation, fluid flow

Machine:

IBM Power3, RS/6000

- Laplacian, cubic grid of size 90, nnz = 7.9M
- Memory usage:
 - SFseq (symbolic sequential), SFpar (symbolic parallel)
 - Entire solvers: SLU_SFseq, SLU_SFpar

Memory needs(MB)	P=8	P=32	P=128
Nnz(L+U)*10^6	1408.4	1498.1	1588.4
	170.1	4.44.0	
SFseq	452.1	461.9	541.4
SFpar (max)	44.9	16.7	14.2
SFseq / SFpar	10.1	27.6	38.1
Factor (max)	1540.0	403.6	108.0
SLU_SFseq	2081.8	941.1	673.3
SLU_SFpar	1723.4	521.5	187.9

3D regular grid (2/2)

Runtime in seconds

Circuit simulation (1/1)

- Pre2: n = 659,033, nnz = 5.9M, 92M fill-ins using parMetis on one processor
- Memory usage:
 - SFseq (symbolic sequential), SFpar (symbolic parallel)
 - Entire solvers: SLU_SFseq, SLU_SFpar

Memory needs(MB)	P=8	P=32	P=128
Nnz(L+U)*10^6	120.1	145.7	138.6
SFseq SFpar (max) SFseq / SFpar	122.0 31.5 3.9	133.0 11.0 12.1	126.4 7.2 17.6
Factor (max)	167.6	52.5	14.2
SLU_SFseq SLU_SFpar	415.3 347.9	239.7 157.6	159.0 96.5

Circuit simulation (2/2)

Runtime in seconds

Fluid flow (1/1)

- bbmat: n = 38,744, nnz = 1.8M, 34M fill-ins using ParMetis on one processor
- Memory usage:
 - SFseq (symbolic sequential), SFpar (symbolic parallel)
 - Entire solvers: SLU_SFseq, SLU_SFpar

Memory needs(MB)	P=8	P=32	P=128
Nnz(L+U)*10^6	35.0	36.7	36.6
SFseq	35.6	36.5	40.7
SFpar (max)	6.7	3.0	1.6
SFseq / SFpar	5.3	12.2	25.4
Factor	44.7	13.1	4.0
SLU_SFseq	86.4	52.1	45.3
SLU_SFpar	58.4	19.5	8.0

Fluid flow (2/2)

Runtime in seconds

Content

- Switch-to-dense
 - Reduce indirect addressing and communication
- Parallel symbolic factorization [Grigori, Demmel, L.]
 - I mprove memory scalability
- Optimal complexity sparse factorization [Gu, Xia, L.]

Fast solver

- In the spirit of fast multipole, but for matrix inversion
- Model problem: discretized system Ax = b from certain PDEs, e.g., 5-point stencil on k x k grid, n = k²
- Nested dissection ordering gave optimal complexity in exact arithmetic [Hoffman/Martin/Ross]
 - Factorization cost: O(k^3)

Exploit low-rank property

- Consider top-level dissection:
- S is full
 - Needs O(k^3) to find u3

$$\begin{pmatrix} A_{11} & 0 & A_{13} \\ 0 & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix}$$

$$S u_3 = f_3 - A_{31}A_{11}^{-1} f_1 - A_{32}A_{22}^{-1} f_2$$

- But, off-diagonal blocks of S has low numerical ranks (e.g. 10~15)
 - U₃ can be computed in O(k) flops
- Generalize to multilevel dissection: all diagonal blocks corresp. to the separators have the similar low rank structure
- Low rank structures can be represented by hierarchical semiseparable (HSS) matrices [Gu et al.] (... think about SVD)
- Factorization complexity ... essentially linear
 - 2D: O(p k^2), p is related to the problem and tolerance (numerical rank)
 - 3D: $O(c(p) k^3)$, c(p) is a polynomial of p

Flops and times comparison

Research issues

- Analysis of 3D problems, and complex geometry
- Larger tolerance > preconditioner (another type of ILU)
 - If SPD, want all the low rank structures to remain SPD
- Performance tuning for many small dense matrices (e.g. size 10~20)
- Need a hybrid solver; find a good switching level
 - Benefits show up only for large enough mesh
- Local ordering of unknowns
 - Node ordering within a separator affects numerical ranks
- Parallelization

Summary of results

- Switch-to-dense
 - Worthwhile if dense flops consistutes over 50%
 - Up to 60% faster
- Parallel symbolic factorization
 - Memory: up to 25x reduction of symbolic fact.; up to 5x reduction of the entire solver
 - Time: up to 14x speedup of symbolic fact.; up to 20% faster of the entire solver
- Optimal complexity factorization
 - Showed linear scaling

Questions?